Personalizing Women's Health Through Menopause and Beyond

"Overview of the Menopause Transition: Highlights from the Study of Women's Health Across the Nation (SWAN)"

> Joel S. Finkelstein, M.D. Associate Professor of Medicine Harvard Medical School Endocrine Unit Massachusetts General Hospital

Background

- The menopause is a universal experience of women in midlife.
- Relatively little is known about differences in menopausal symptoms and physiology among women.
- Most information on the menopause is derived from studies of Caucasian women.
- It is unclear if many midlife changes are due to the menopause or aging (or both).

Outline of presentation

- Describe SWAN (The Study of Women's Health Across the Nation)
- Discuss midlife changes commonly linked to the menopause transition
 - Novel findings from SWAN for changes known to be related to the menopause transition
 - Determine whether other common midlife change are due to the menopause transition or to aging.
- Speculate from an evolutionary perspective why some midlife changes are clearly linked to the menopause transition while others appear to be due primarily to aging.

SWAN: Overview

 SWAN is a multi-center study funded by the National Institutes of Health to examine a wide variety of issues as women traverse the menopause.

SWAN: Overview

- SWAN is a multi-center study funded by the National Institutes of Health to examine a wide variety of issues as women traverse the menopause.
- SWAN investigates a broad range of physiological, psychological, and social issues for women at mid-life.

SWAN: Overview

- SWAN is a multi-center study funded by the National Institutes of Health to examine a wide variety of issues as women traverse the menopause.
- SWAN investigates a broad range of physiological, psychological, and social issues for women at mid-life.
- A unique feature of SWAN is that a wide variety of racial and ethnic groups are included
 - African-Americans (n=935)
 - Caucasians (n=1,550)
 - Chinese (n=250)
 - Hispanics (n=286)
 - Japanese (n=281)

SWAN: Overview

- SWAN is a multi-center study funded by the National Institutes of Health to examine a wide variety of issues as women traverse the menopause.
- SWAN investigates a broad range of physiological, psychological, and social issues for women at mid-life.
- A unique feature of SWAN is that a wide variety of racial and ethnic groups are included
 - African-Americans (n=935)
 - Caucasians (n=1,550)
 - Chinese (n=250)
 - Hispanics (n=286)
 - Japanese (n=281)
- Broad goals of SWAN are to describe characteristics of the transition, separate effects of chronologic vs ovarian aging, and describe ethnic variations in menopause and mid-life experiences.

SWAN: Participating Sites

- Massachusetts General Hospital
- New Jersey Medical School
- Rush-Presbyterian St. Luke's Medical Center Chicago
- University of California at Davis
- University of California at Los Angeles
- University of Michigan
- University of Pittsburgh
- Coordinating Center University of Pittsburgh
- Core Laboratory University of Michigan

SWAN: Study design

Phase I: Cross-sectional study (n=16,000)

 15 minute telephone interview to obtain data on a variety of topics in women aged 40-55 (irrespective of menstrual status) and determine eligibility for the cohort.

SWAN: Study design

Phase I: Cross-sectional study (n=16,000)

 15 minute telephone interview to obtain data on a variety of topics in women aged 40-55 (irrespective of menstrual status) and determine eligibility for the cohort.

Phase II: Longitudinal cohort study (n=3,302)

- Common core protocol at all 7 study sites for premenopausal women age 42 to 52.
- Each site recruited 450 women, half Caucasian and half of the site's targeted minority group.

SWAN: Menopause status definitions

- Premenopause: bleeding within last 3 months with no change in regularity in past year
- Early perimenopause: bleeding within last 3 months with some change in regularity in past year
- Late perimenopause: no bleeding within last 3 months but some bleeding in last 11 months
- Postmenopause: no bleeding for at least 12 consecutive months

SWAN: Eligibility for Longitudinal Study

- Age 42 to 52 at last birthday
- Pre- or early perimenopausal status and not currently pregnant
- No use of oral contraceptives or other female reproductive hormones in past 3 months
- Self-identified ethnicity belonging to one of the site's targeted ethnic groups

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

 Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

- Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.
- Measurement of height, weight, waist:hip ratio, and BP

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

- Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.
- Measurement of height, weight, waist:hip ratio, and BP
- A single fasting blood sample between days 2-5 of the menstrual cycle for reproductive hormones, lipids, insulin, glucose, CRP, PAI-1, hemostatic factors, etc.

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

- Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.
- Measurement of height, weight, waist:hip ratio, and BP
- A single fasting blood sample between days 2-5 of the menstrual cycle for reproductive hormones, lipids, insulin, glucose, CRP, PAI-1, hemostatic factors, etc.
- Monthly menstrual calendar with symptom assessment

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

- Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.
- Measurement of height, weight, waist:hip ratio, and BP
- A single fasting blood sample between days 2-5 of the menstrual cycle for reproductive hormones, lipids, insulin, glucose, CRP, PAI-1, hemostatic factors, etc.
- Monthly menstrual calendar with symptom assessment
- Spine, hip, and total body BMD by DXA

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

- Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.
- Measurement of height, weight, waist:hip ratio, and BP
- A single fasting blood sample between days 2-5 of the menstrual cycle for reproductive hormones, lipids, insulin, glucose, CRP, PAI-1, hemostatic factors, etc.
- Monthly menstrual calendar with symptom assessment
- Spine, hip, and total body BMD by DXA
- Body composition by DXA and bioelectrical impedance

SWAN: Core Protocol

The SWAN cohort study core protocol includes:

- Multiple questionnaires to assess medical history, reproductive history, menstrual history, family history, symptoms, medications, diet, physical activity, mood, QOL, sexual function, cognitive function, social support, CAM use, etc.
- Measurement of height, weight, waist:hip ratio, and BP
- A single fasting blood sample between days 2-5 of the menstrual cycle for reproductive hormones, lipids, insulin, glucose, CRP, PAI-1, hemostatic factors, etc.
- Monthly menstrual calendar with symptom assessment
- Spine, hip, and total body BMD by DXA
- Body composition by DXA and bioelectrical impedance
- White blood cells for DNA

SWAN: Daily Hormone Study

- At each site, 90-180 women (n = 990) collected a daily morning urine sample for 1 menstrual cycle (or 50 days depending on which comes first) each year.
- Urine samples were analyzed for sex steroid metabolites, gonadotropins, and creatinine.

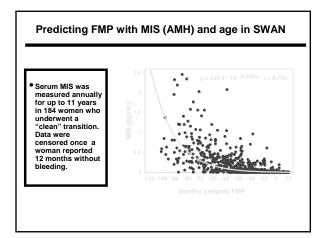
SWAN: Selected Cohort Study Topics

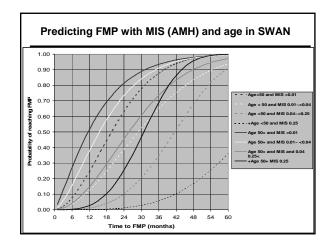
- Menopause symptoms
- Bone loss and bone turnover
- Cardiovascular disease predictors
- Physical and psychological health
- Health status and health care utilization
- Complementary and alternative medicine use
- Dietary habits and effects on health
- Body composition
- Cognitive function
- Sexual function and activity
- Sleep disturbances
- Menstrual bleeding patterns
- Reproductive hormone profiles

What can we learn from SWAN?

- Descriptive data about the menopause transition
 Age of menopause and factors that modify it
 Hormone profiles
- Develop predictive models for midlife events
- Use of Mullerian Inhibiting Substance to predict the FMP
- Details about changes known to be related to menopause
 Bone loss
 - Vasomotor symptoms
- Distinguish if other midlife changes are due to menopause or aging
 Weight, body composition, and lipids
 Mood, cognition, and sexual desire
- Develop hypotheses regarding mechanisms and causation of effects

Age at FMP in SWAN


 Median age of natural FMP was 51.4 years in cross sectional survey and 53 years in longitudinal cohort study (adjusted for multiple covariates including race/ethnicity, BMI, smoking, education, parity, prior use of OCPs).


Variables in multivariable

- model: • Baseline FSH
- Baseline FSH
 Baseline estradiol
- Education
- Prior OCP use
- Diabetes
- HeightWeight
- Marital status
- Variables not in multivariable model:
 - Race/ethnicity
 - SmokingParity
 - Income
 - Self-reported health
 - Heart disease
 - Genistein intake

Predicting FMP with MIS (AMH) and age in SWAN

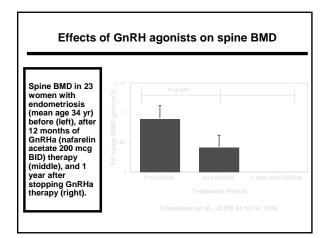
- A major unmet goal of menopause research is to predict when a woman will stop menstruating.
- Because MIS (Mullerian Inhibiting Substance) is made by granulosa cells, we hypothesized that MIS levels would decline progressively as follicles are lost each month and thus provide a stable marker of ovarian aging.

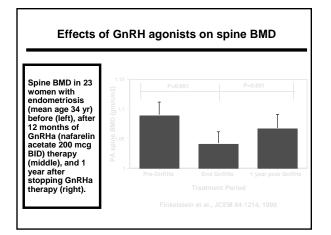
Changes often attributed to the menopause transition **Cleary established Relationship unclear** Vasomotor flushes · Weight gain Bone loss Increase in body fat Vaginal dryness • Decrease in lean mass Decreased breast density Increase in LDL Increase in BP Increase in vascular ds Increase in depression • Decrease in cognitive fx Increase in incontinence Decrease in libido Difficulty sleeping

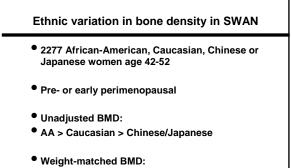
Criteria for a menopause effect

- The change should occur with ovariectomy (or GnRH agonist administration) and should be preventable with hormone replacement.
- The natural menopause transition should be associated with an alteration in the rate of change compared with premenopausal years.

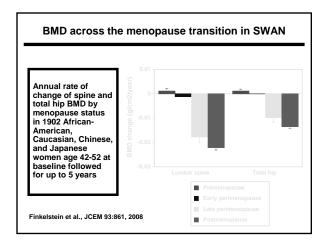
Criteria for a menopause effect

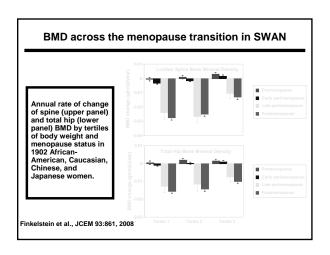

 The change should occur with ovariectomy (or GnRH agonist administration) and should be preventable with hormone replacement.

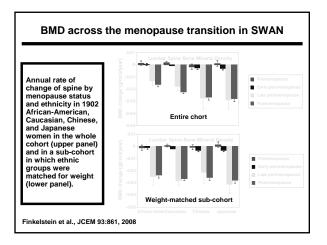

Criteria for a menopause effect

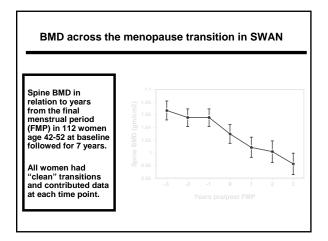

- The change should occur with ovariectomy (or GnRH agonist administration) and should be preventable with hormone replacement.
- The natural menopause transition should be associated with an alteration in the rate of change compared with premenopausal years.
- The change should occur in the majority of women as they go through the menopause transition.

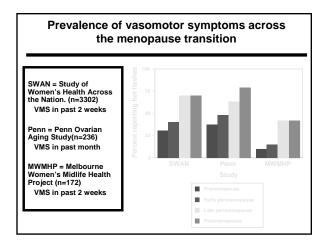
Criteria for a menopause effect

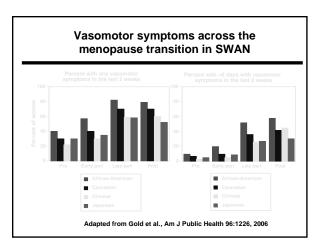

- The change should occur with ovariectomy (or GnRH agonist administration) and should be preventable with hormone replacement.
- The natural menopause transition should be associated with an alteration in the rate of change compared with premenopausal years.
- The change should occur in the majority of women as they go through the menopause transition.
- There should a plausible biologic mechanism linking ovarian hormones to the observed changes.

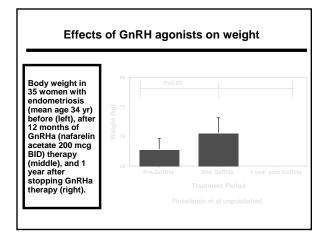


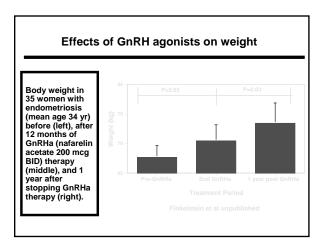


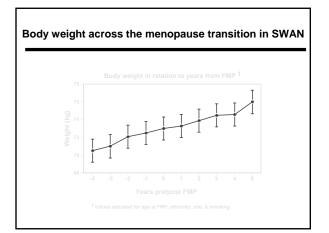


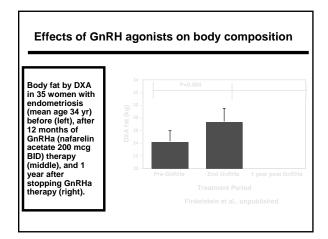

- AA > or = Chinese/Japanese > Caucasian
 - Finkelstein et al., JCEM 87:3057-67, 2002

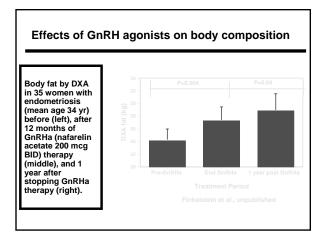


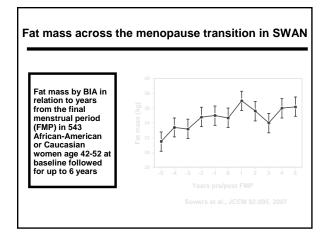


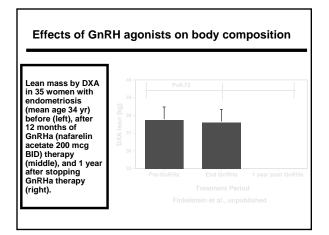


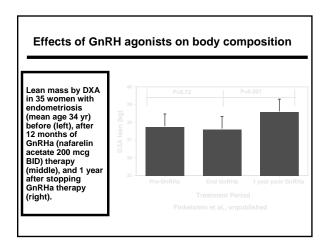


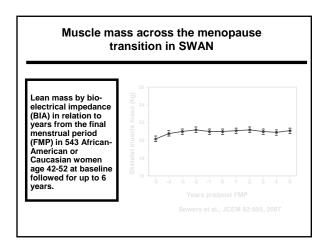


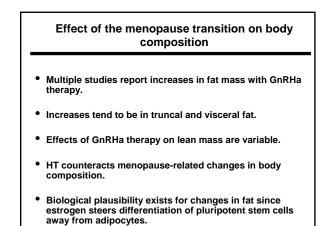


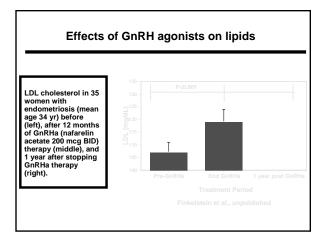


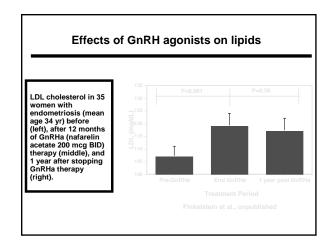


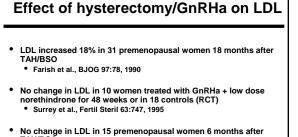


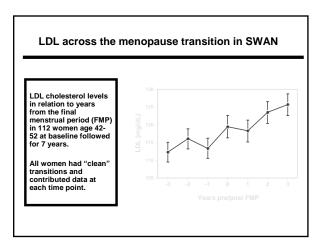




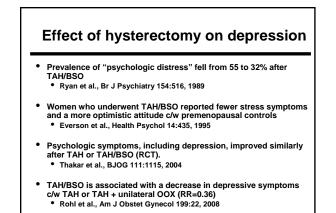


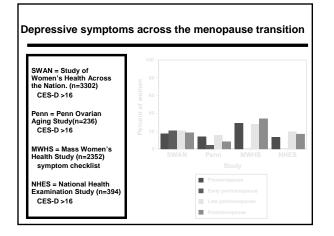


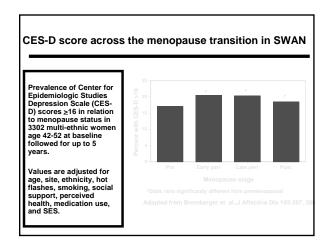




- Goldman et al., Eur J Obstet Gynecol Reprod Biol 66:133, 1996
- No change in LDL in 30 premenopausal women 6 months after TAH/BSO versus 44 controls who underwent TAH alone • Cheung et al., Climacterc 1:33, 1998

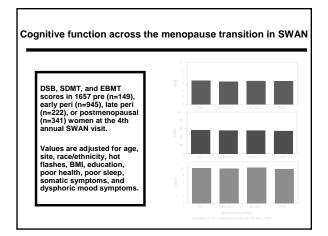

Carotid IMT across the menopause transition


- Age-adjusted carotid IMT (intima-media thickness) was related to years since TAH/BSO but not to years since TAH.
 Dwyer et al., Am J Epidemiol 156:438, 2002
- Carotid IMT was lower in 70 surgically menopausal women who received HT than in 65 women those who did not.
 Mihmanli et al., Maturitas 42:37, 2002
- In the HERS study, HT had no significant effect on the progression of carotid IMT.
 Byington et al., Arterioscler Thromb Vasc Biol 22:1692, 2002
- In SWAN, a cross-sectional analysis in 483 women found no significant association between menopause status and IMT after adjustment for age.
 Wildman et al., Menopause 15:414, 2008

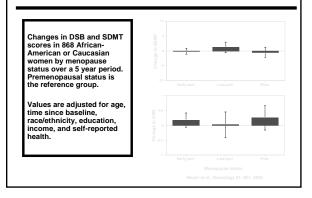

Sexual desire across the menopause transition

- Women had fewer sexual thoughts as they went through the menopause transition.
 McCoy et al., Maturitas 7:203, 1985
- Advancing menopause status was associated with lower sexual desire.
 - Avis et al., Menopause 7:297, 2000
- Sexual desire declined exponentially from late peri- to postmenopause and the prevalence of sexual dysfunction increased from 42% to 88%.
 Dennerstein et al., Fertil Steril, 2001

 $\begin{array}{l} \textbf{Sexual desire across the menopause}\\ \textbf{Percent of women}\\ \textbf{reporting sexual}\\ \textbf{desire at various}\\ \textbf{stages of the}\\ \textbf{menopause transition}\\ \textbf{in SWAN}.\\ \textbf{Analyses adjusted for}\\ \textbf{age, psychosocial}\\ \textbf{health variables.} \end{array} \textbf{J} \qquad \begin{array}{l} \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} \\ \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u} & \textbf{u}$


10

Ovarian hormones and cognitive function


- Estrogens, androgens, or both had no effective on cognitive function. Women who underwent TAH scored better than women who had TAH/BSO.
 Sherwin, Psychoneuroendocrinology 13:345, 1988
- Cognitive function (MMSE) was similar in former, current, and never HRT users.
 - Low et al., Maturitas 54:86, 2006
- Effects of menopause status on cognitive function (National Adult Reading Test) are explained by premenopausal cognitive function.
 Kok et al., Menopause 13:19, 2006
- CEE alone or with MPA lowered cognitive performance (MMSE) in women participating in the WHI Memory Study (WHIMS).
 Espeland et al., JAMA 291:2959, 2004

Cognitive function tests in SWAN

- Symbol Digit Modalities Test (SDMT)
 Evaluates processing speed, working memory, and executive functioning (maximum score = 110)
- Digit Span Backward (DSB)
 Assesses working memory (maximum score = 12)
- East Boston Memory Test (EBMT)
 Evaluates immediate and delayed verbal memory (maximum score = 12)

Cognitive function across the menopause transition in SWAN

Changes often attributed to the menopause transition

Link is clearly established

- Vasomotor flushes
- Bone loss
- Vaginal dryness
- Decreased breast density

Changes often attributed to the menopause transition

Link is clearly established

- Vasomotor flushes
- Bone loss
- Vaginal dryness
- · Decreased breast density

Evidence favors a link

- Decreased libido
- Increase in body fat

Changes often attributed to the menopause transition

Link is clearly established • Vasomotor flushes

Decreased breast density

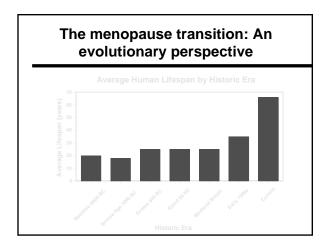
- Evidence is equivocal
- Increase in LDL
- Bone loss • Vaginal dryness
- Difficulty sleeping
 - Increase in vascular ds

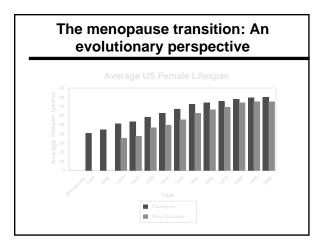
Evidence favors a link

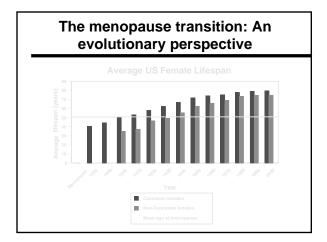
- Decreased libido
- · Increase in body fat

Changes often attributed to the menopause transition

Link is clearly established


- Vasomotor flushes Increase in LDL • Difficulty sleeping
- Bone loss
- Vaginal dryness
- Decreased breast density


Evidence favors a link


- Decreased libido
- Increase in body fat
- Increase in vascular ds Evidence is largely against Increase in weight
- Increase in BP

Evidence is equivocal

- Decrease in lean mass
- Increase in coagulation
- Increase in depression
- Decrease in cognition
- Increase in incontinence

The menopause transition: An evolutionary perspective

• Evolution did not plan for a prolonged menopause--if it planned for any menopause at all!

The menopause transition: An evolutionary perspective

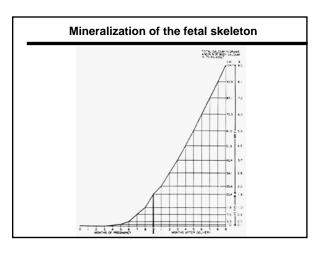
- Evolution did not plan for a prolonged menopause--if it planned for any menopause at all!
- As far as evolution is concerned, we exist to reproduce, ensure the survival of our offspring, and then we can die.

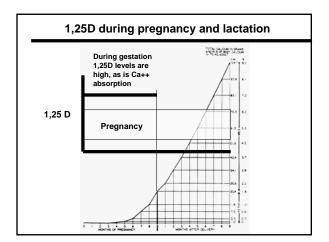
The menopause transition: An evolutionary perspective

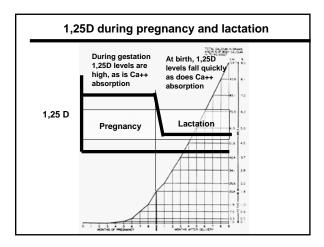
Vaginal lubrication and libido

 Are unnecessary once a woman is no longer reproductively competent. Evolution does not care about sexual pleasure.

The menopause transition: An evolutionary perspective


- Vaginal lubrication and libido
 Are unnecessary once a woman is no longer reproductively competent. Evolution does not care about sexual pleasure.
- Glandular breast tissue
 - No longer needed once a woman is done nursing her young.


The menopause transition: An evolutionary perspective

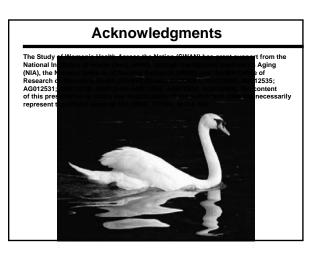

- Vaginal lubrication and libido
 Are unnecessary once a woman is no longer reproductively competent. Evolution does not care about sexual pleasure.
- Glandular breast tissue
 No longer needed once a woman is done nursing her young.
- Increased body fat
 A useful adaptation to deal with the energy requirements of nursing a neonate as fat is the most efficient energy source

The menopause transition: An evolutionary perspective

- Vaginal lubrication and libido
 - Are unnecessary once a woman is no longer reproductively competent. Evolution does not care about sexual pleasure.
- Glandular breast tissue
 - No longer needed once a woman is done nursing her young
- Increased body fat
 - A useful adaptation to deal with the energy requirements of nursing a neonate as fat is the most efficient energy source
- Estrogen-deficiency bone loss
 What does it have to do with reproduction?

The menopause transition: An evolutionary perspective

Vaginal lubrication and libido


 Are unnecessary once a woman is no longer reproductively competent. Evolution does not care about sexual pleasure.

- Glandular breast tissue
 No longer needed once a woman is done nursing her young
- Increased body fat • A useful adaptation to deal with the energy requirements of nursing a neonate as fat is the most efficient energy source
- Estrogen deficiency bone loss
 Evolution's way of mobilizing calcium for the neonate
- Hot flashes
 - Are they an accident of evolution?

The menopause transition: An evolutionary perspective

- Vaginal lubrication and libido
 Are unnecessary once a woman is no longer reproductively competent. Evolution does not care about sexual pleasure.
- Glandular breast tissue
 No longer needed once a woman is done nursing her young
- Increased body fat
 A useful adaptation to deal with the energy requirements of nursing a neonate as fat is the most efficient energy source
- Estrogen deficiency bone loss
 Evolution's way of mobilizing calcium for the neonate
- Hot flashes
 I doubt it but I don't know why they are conserved.

