Raising Awareness. Saving Lives.

The FIND FH® Initiative

www.theFHfoundation.org

The FIND FH[®] Initiative

Finding Undiagnosed Familial Hypercholesterolemia Patients in the U.S.

Joshua W. Knowles, MD, PhD Stanford University and the FH Foundation knowlej@stanford.edu Kelly D. Myers The FH Foundation KM@theFHfoundation.org

Raising Awareness. Saving Lives

Our Mission

The FH Foundation is a patient-centered nonprofit organization, dedicated to **education**, **advocacy,** and **research** of Familial Hypercholesterolemia (FH).

Our mission is to raise awareness of FH and **save lives** by increasing the rate of early diagnosis and encouraging proactive treatment.

Case Presentation

38-year-old female

- Normal childhood. In high school told she had elevated cholesterol but no therapy ("too young").
- Married 2004, first child 2009
- Early 2010: began to have chest pain
- Summer 2010: PCP checked cholesterol -> very elevated -> referred to cardiologist -> stress test markedly positive -> scheduled for angiogram
- While sleeping on morning of scheduled cath began to groan, act in distress, unresponsive
- Husband began CPR -> EMS -> Vfib arrest -> resuscitated -> cooling protocol -> Troponin 10, EF 20% -> Transferred to Stanford

Placement of stent and ventricular assist device

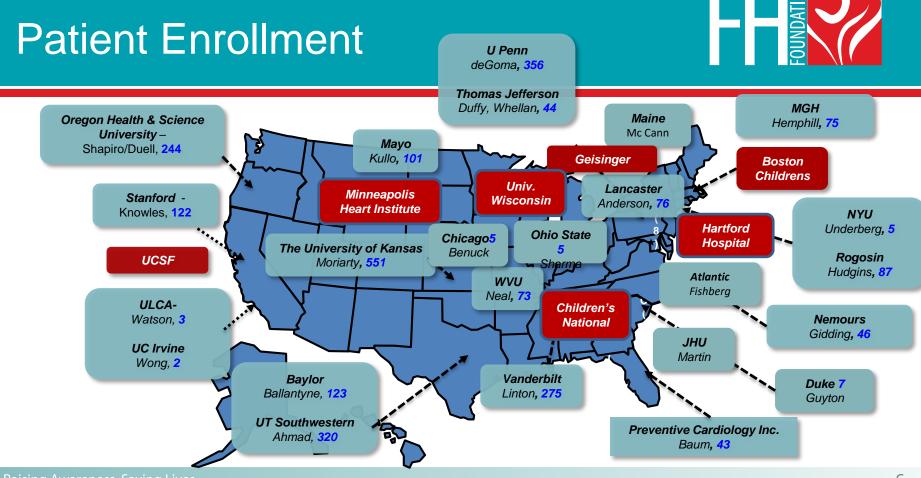
ing Augroposs, Souting Lives

FIND FH is a project designed as a collaboration between academia and a patient-led organization to identify undiagnosed FH patients so that preventive measures can be undertaken.

This outcome could have been averted if FH had

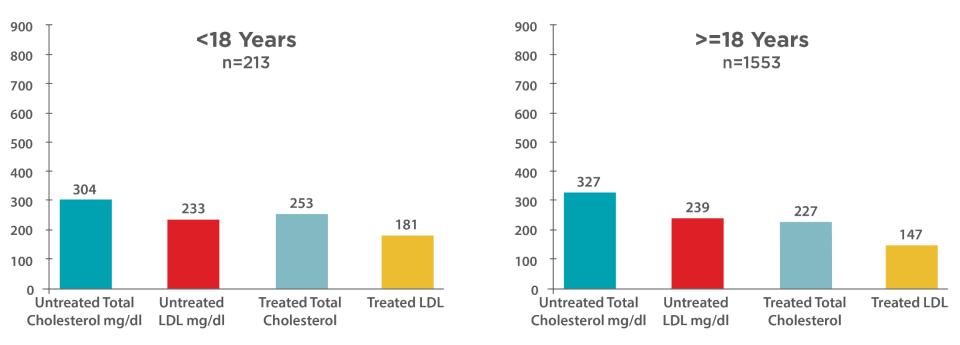
been diagnosed and treated earlier.

Severe 3 vessel coronary disease



Raising Awareness. Saving Lives

Lipids for HeFH Patients



Raising Awareness. Saving Lives FH Foundation International Summit. September 24-25, 2016. Los Angeles, CA.

Cardiovascular Disease

ASCVD, n=1273	38%
Age at onset, years	52
CHD, overall cohort	36%
Age at onset, years	51
CHD, men	47%
Age at onset, years	47
CHD, women	29%
Age at onset, years	55
Stroke or TIA, n=1282	5%
Aortic valve disease, n=1284	3%

Raising Awareness. Saving Lives FH Foundation International Summit. September 24-25, 2016. Los Angeles, CA.

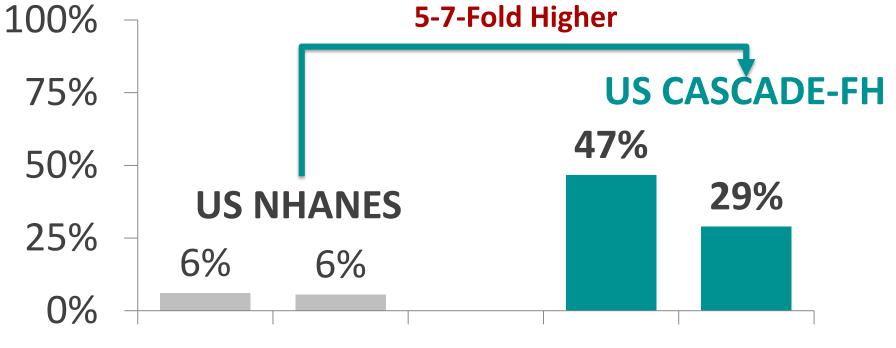
Treated LDL-C Values & Reduction

	Statin-treated	Not statin-treated
Treated LDL-C*	n=959	n=125
<70 mg/dl	58 (6%)	5 (4%)
70-99 mg/dl	194 (20%)	11 (9%)
100-129 mg/dl	238 (25%)	7 (6%)
130-159 mg/dl	153 (16%)	35 (28%)
160-189 mg/dl	113 (12%)	22 (18%)
≥190 mg/dl	203 (21%)	45 (36%)
LDL-C reduction [*]	n=576	n=76
≥50%	257 (45%)	9 (12%)

Raising Awareness. Saving Lives FH Foundation International Summit. September 24-25, 2016. Los Angeles, CA.

High Prevalence of CHD

Men Women



Men Women

FH Foundation International Summit. September 24-25, 2016. Los Angeles, CA.

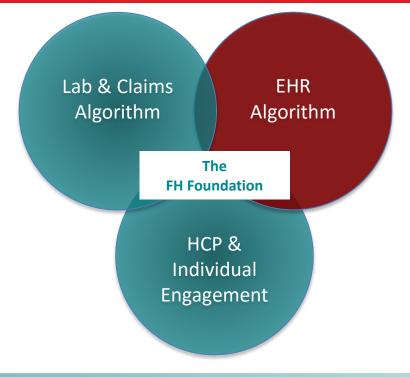
Goal Attainment

	UK 2008	CASCADE-FH	Netherlands 2010		
100% -	7	Treated LDL-C<100 mg/dl			
50% -	30%	25%	21%		
0% -					
100%	64%	Reduction in LDL-C≥50%	60%		
50%	_	41%			
0%					

Pijlman et al. Atherosclerosis. 2010;209:189; Hadfield et al. Annals Clin Biochem. 2008;45:199.

FIND FH[®]

A multiyear screening and engagement initiative to identify and encourage the diagnosis and treatment of FH



Lab & Claims Data Mining

- Healthcare encounter data on 89 million
 Americans with cardiovascular disease
- Data from a significant majority of clinical practices

EHR Data Mining

- Comprehensive EHR data from two academic centers
- Expanding to key integrated health systems

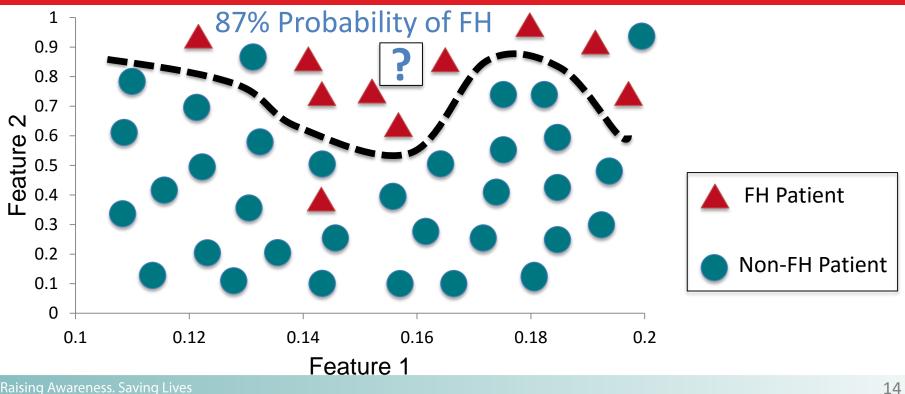
HCP & Individual Engagement

- Multichannel tools to engage health systems and individual HCPs
- Tools for clinicians and individuals with FH

Machine Learning

- Software that learns by example.
- We show the model examples of FH and Non-FH patients.
- Patients are described to the model using features (inputs):
 - Lab Results
 - Patient Age
 - ICD9 codes
 - Etc...
- The model learns correlation between certain features and FH rate.
- Model can classify FH in new patients using just their features.

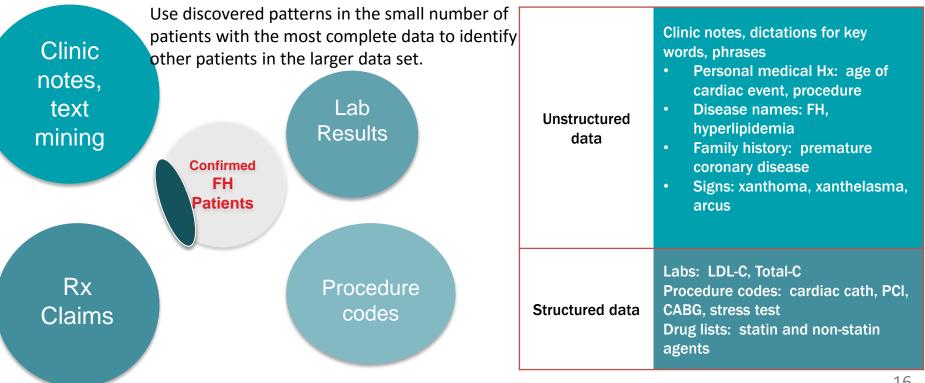
Machine Learning Example



TYPES OF DATA	STRUCTURED DATA				UNSTRUCT	URED DATA
TTPES OF DATA		Electronic	1 Medication	2	Medication	
		pill dispensers	prescribed		instructions	Medication taken
Medication	1 OTC medicat		Dose Route		Allergies	Diaries Herbal remedies
	2		NDC RxNorm		Out-of-pocket expenses	Alternative therapies
Demographics			HL7			
Encounters		Employee sick days	Visit type and time		Chief complaint	
Diagnoses		Death records	SNOMED ICD-9		Differential diagnosis	
Procedures			CPT ICD-9			
Diagnostics (ordered)	PERSONAL HEALTH RECORDS	HOME TREATMENTS, MONITORS, TESTS	LOINC Pathology, histology ECG Radiology		REPORTS	
Diagnostics (results)			Lab values, vital signs		(TRACINGS) IMAGES	
Genetics	PATIENTS	23andMe.com	SNPs, arrays			
Social history	LIKEME.COM	Police records	Tobacco/alcohol use		DIGITAL	BLOGS
Family history		Ancestry.com			CLINICAL NOTES	
Symptoms		Indirect from OTC purcha			PHYSICAL	TWEETS
Lifestyle		Fitness club membership grocery store purchases	s, CREDIT CARD PURCHASES		EXAMINATIONS	
Socioeconomic		Census records, Zillow,			PAPER	FACEBOOK POSTINGS
Social network		Facebook friends, Twitte	r hashtags		NOTES/	
Environment	Climate, weather, public health databases, HealthMap.org, GIS maps, EPA, phone GPS				News feeds	
	Probabilistic linkage to validate existing data or fill in missing data					
	Examples of bior			y to link data	to an individual	Data quantity
	Pharmacy d	ata 🔡 Health care cent health record) da	ata	er to link to ir		
	Claims data	Registry or clinic	al trial data	der to link to y aggregate d		
2479-80	Data outside	e of health care system				More Less

Weber GM et al. JAMA. 2014;311:2479-80.

Identifying FH Patient Characteristics Using Orthogonal Data

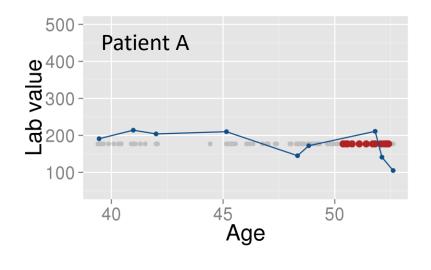


Electronic Phenotyping

Phenotype

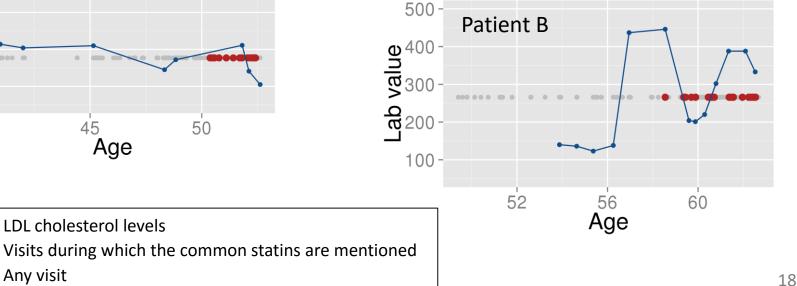
- A physical attribute: height, weight, blood type, etc
- A condition: obesity, rheumatoid arthritis, FH ...
- A pattern of events: "Patients with known poor left ventricular function with an ejection fraction of 45%, having community acquired pneumonia with a serum hemoglobin less than ..."
- **Phenotyping:** A method for assigning a phenotype label to a patient record
- We can view phenotyping as a supervised learning problem.
 - So we need a set of true positive, and a set of true negative cases.

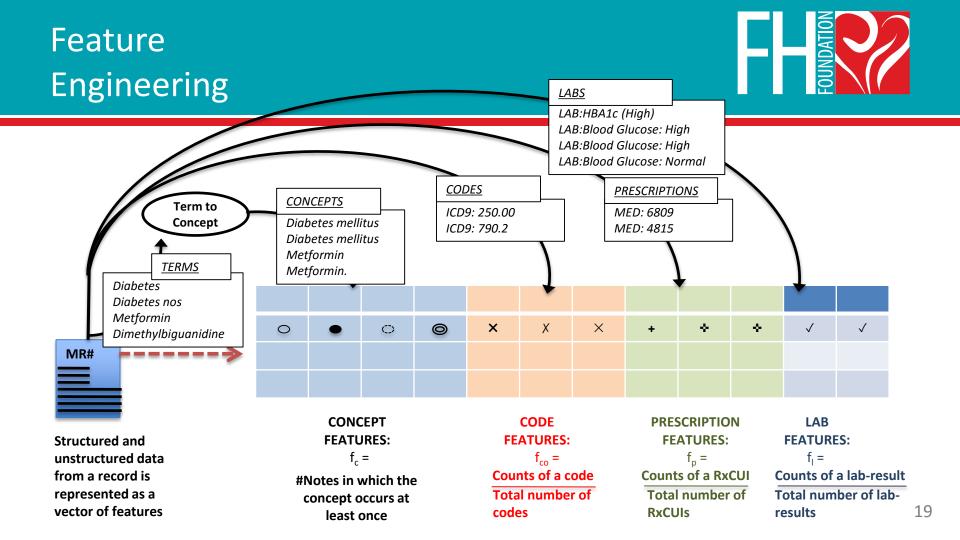
Examples of the Data We Encounter



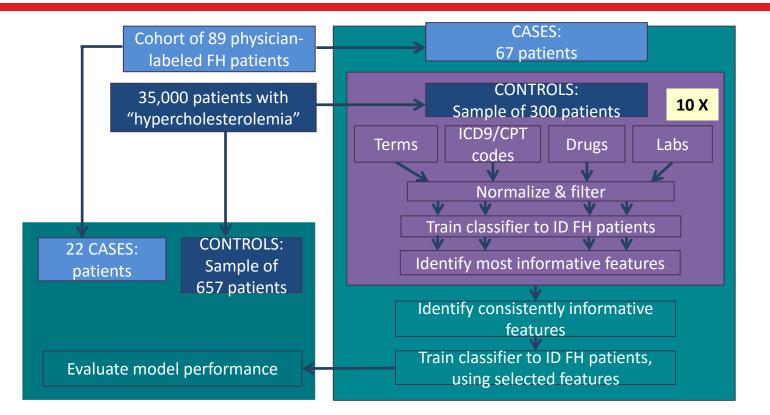
LDL cholesterol levels

Any visit





Classifier Building



Performance Characteristics

N (FH cases)	N (controls)	AUC	PPV	Sensitivity	Specificity	F1 score
89	300 (high cholesterol)	0.91	0.76	0.78	0.92	0.76
89	300 (one comorbidity)	0.92	0.75	0.83	0.93	0.79

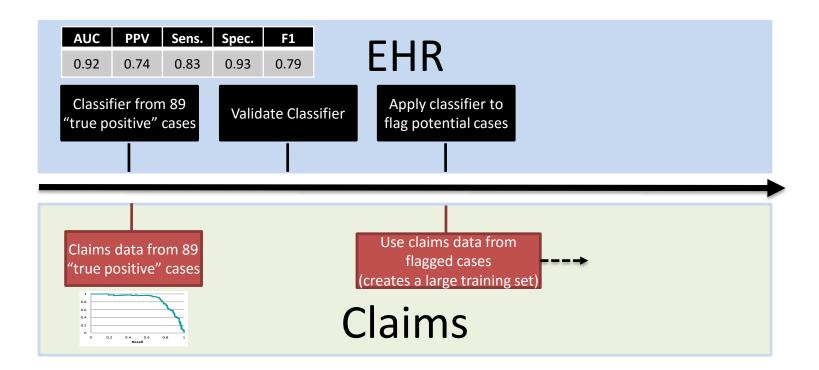
QUESTION: DO WE KNOW WHAT WOULD BE THE PERFORMANCE CHARACTERISTICS just choosing something dumb like LDL levels?

DO we have any metrics on how much the performance is boosted using orthogonal data?

Universe of Patients to Make Predictions on:

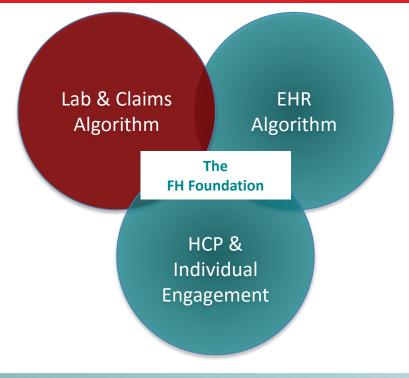
	Stride 6 patients
Criteria 1 - High cholesterol	401,978
Criteria 2 - One comorbidity	379,224
Criteria 3 – Had > 1 visit (total), had a visit w/in 2 years, have "one comorbidity"	249,983
	\checkmark
What are the clinical	Run classifier
characteristics of the patients	1
Sanity chack by	Ranked list of
hagged by the algorithm:	patients
How well do the flagged	patients
patients fit existing diagnostic	
criteria?	est in other EHR
 "Precision at a certain rank" Iterate 	
	Geisinger, Mayo, Penn
• Top 50?	Assess performance in
• Top 100?	Gene + vs gene -
• Top 150?	

Scaling to National Level



FIND FH[®]

A multiyear screening and engagement initiative to identify and encourage the diagnosis and treatment of FH



Lab & Claims Data Mining

- Healthcare encounter data on 89 million
 Americans with cardiovascular disease
- Data from a significant majority of clinical practices

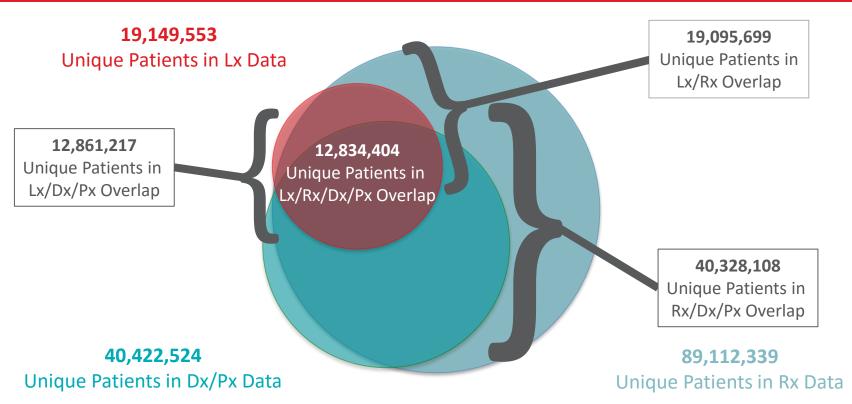
EHR Data Mining

- Comprehensive EHR data from two academic centers
- Expanding to key integrated health systems

HCP & Individual Engagement

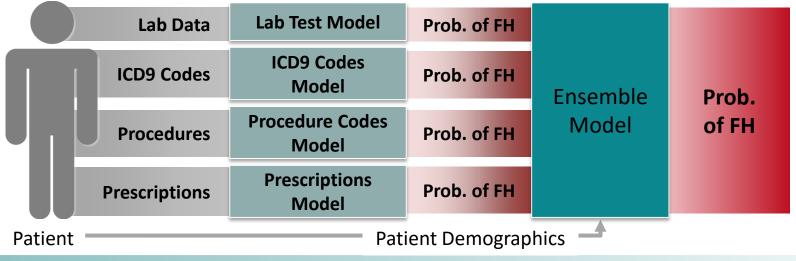
- Multichannel tools to engage health systems and individual HCPs
- Tools for clinicians and individuals with FH

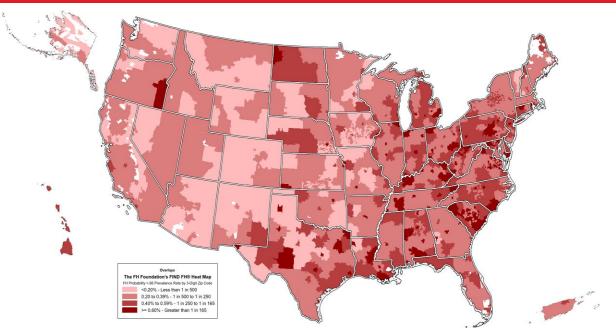
FH Foundation Lab & Claims Database



Ensemble Model

- Multiple models working together
- We build a Random Forest classifier for each class of features
- Output of each model becomes a feature into the ensemble classifier





FIND FH[®] Lab & Claims Algorithm Developed by The FH Foundation

Claims Data Source: IMS Health Real World Data: LRx longitudinal prescriptions and Dx medical claims

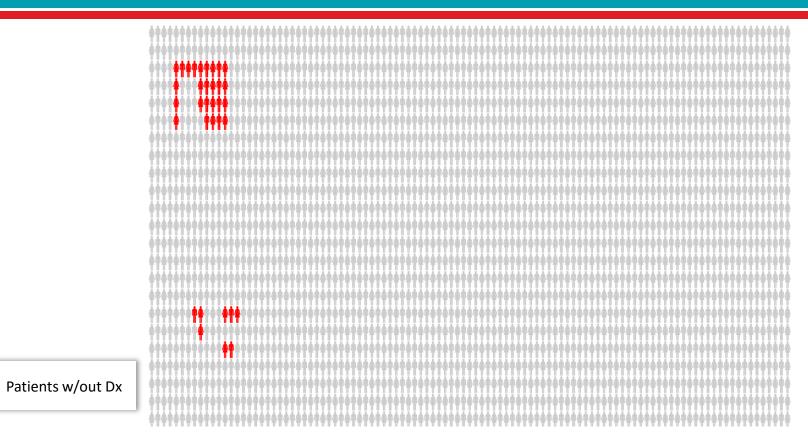
Raising Awareness. Saving Lives

NDAT

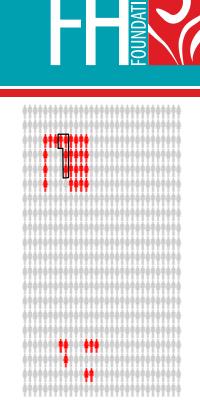
Precision vs Recall

Patients

w/Dx



Striking a Balance Between Precision & Recall



Perfect Recall; Low Precision

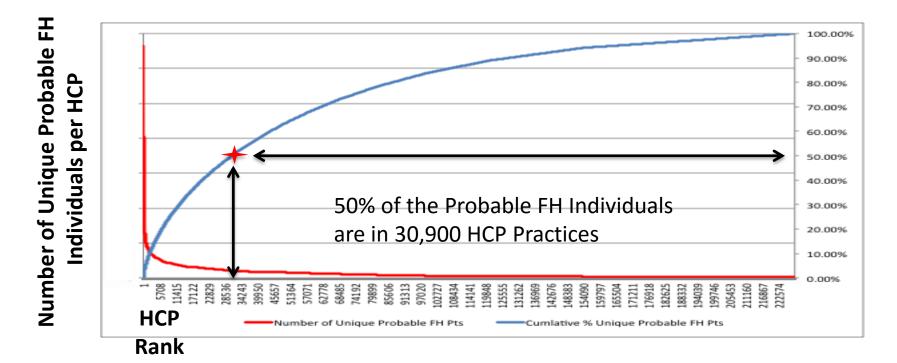
Balanced Recall and Precision

Low Recall; Perfect Precision

75% of the Top HCPs Are PCPs

Hcpid	Specialty	City	State	Zip3	Unique Tot CVD Pts	Unique Probable <i>≂</i> FH > 0.9
1984181	FAMILY MEDICINE	EVANSVILLE	KY	424	246	124
400657	INTERNAL MEDICINE	FAYETTEVILLE	NC	283	810	107
486555	GENERAL PRACTICE	VAN NUYS	CA	914	822	101
2058521	INTERNAL MEDICINE	NEWARK	NJ	070	930	88
957011	GASTROENTEROLOGY	PITTSBURGH	PA	152	160	86
1954569	FAMILY MEDICINE	FT WORTH	ΤX	760	976	82
1962562	FAMILY MEDICINE	SOUTH FLORIDA	FL	330	762	81
321530	FAMILY MEDICINE	PALATINE	IL	600	168	81
2131272	CARDIOVASCULAR DISEASES	HOUSTON	ΤX	770	1,401	76
1761176	NURSE PRACTITIONER	HACKENSACK	NJ	076	845	75
1492128	FAMILY MEDICINE	EUREKA	CA	955	172	68
1880622	INTERNAL MEDICINE	TUSCALOOSA	AL	354	541	68
436410	PHYSICIAN ASSISTANT	BUFFALO	NY	142	505	67
1390586	FAMILY MEDICINE	HUNTSVILLE	AL	356	577	66
1886494	FAMILY MEDICINE	SHREVEPORT	LA	711	1,016	64
2033271	FAMILY MEDICINE	SALISBURY	MD	218	166	63
24358	INTERNAL MEDICINE	BIRMINGHAM	AL	352	1,115	62
351493	ENDOCRINOLOGY & METAB	BOWLING GREEN	KY	421	517	62
866261	CARDIOVASCULAR DISEASES	INGLEWOOD	CA	902	765	61
1123362	INTERNAL MEDICINE	HONOLULU	HI	967	414	59
1349873	FAMILY MEDICINE	HONOLULU	HI	967	578	59
1062287	GENERAL PRACTICE	SN BERNARDINO	CA	925	767	58
232373	FAMILY MEDICINE	CHARLOTTE	NC	282	1,075	57
207773	FAMILY MEDICINE	HACKENSACK	NJ	076	446	55
691682	INTERNAL MEDICINE	KNOXVILLE	TN	377	493	55
960935	GASTROENTEROLOGY	KNOXVILLE	TN	378	336	55

Harnessing the Power Law

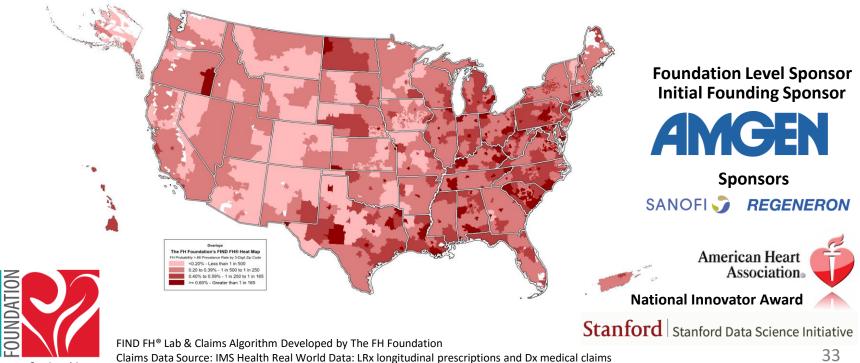


FIND FH 2016

- Two Additional Clinical Partnerships
 - Geisinger Health System (GHS)
 - Ohio State University Wexner Medical Center (OSU)
- FIND FH Algorithm Clinical Validation
- KOL Network Engagement Campaign
- Manuscript
 - Submit at Least 1 Manuscript

♥ FiveThirtyEight

Politics	Sports	Science & Health	Economics	Culture
⊕ ¥	An A	ealth 4:01 PM JAN 13. Igorithm C tic Disease	ould Ki	iow You Have You Do
	By ANNA MAR	IA BARRY-JESTER		



Raising Awareness. Saving Lives.

Cardiometabolic Health Congress - March 4-5 - San Francisco, CA